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ABSTRACT

The consistency and asymptotic normality of a linear least squares

estimate of the form (XX) -X*Y when the mean is not X6 is investigated in

this paper. The least squares estinate is a consistent estimate of the

best linear approximation of the true nean function for the design chosen.

The asymptotic normality of the least squares estimate depends on the design

and the asymptotic mean nay not be the best linear approximation of the true

mean function.

Key words: Consistency, asymptotic normality, best linear arproximation,

model robustness.
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Linear Least Squares Estimates
and l'onlinear fleans

1. Introduction

In the standard linear models theory, the mean of an observation vector

Y is given X8 where XA is a known matrix of constants and B is an unknown

vctor of paraneters. The estimate B = (X'X) X-Y, where (X'X) is a gen-

eralize, inverse of XvX, has many well-known and desirable properties. Con-

siderinp that both regression and analysis of variance problems are part

of the linear models theory, estimates like 0 are among the most widely used

of all parameter estimates.

If the nean of Y is not YO, the properties of 0 are not described by

the standard linear models theory. Indeed, it may not be clear what (if

anything); is estimating. The behavior of 6 for larpe samples when the mean

* is not XB is investigated in this paper. his behavior is found to depend

on the design used in the experiment. But, for a given design, B is shown

to estimate the best linear apnroxination of the true nean function in a sense

to be defined.

In Section 2, the model and notation are defined. In Section 3,0 is

shown to be a consistent estimate of the best linear approximation. The

asymptotic normality of B is investigated in Section A. Section 5 contains

some exarnles.

Other authors have considered questions related to those addressed herein.

The question of model robustness', whrnt ; is estimating, i the mean is not

XO, has been investipated by aut'iers such as Box and Draner (1959), Atwood

(1971), 5tigler (ln7l) and Iluber (117S). These authors considered specific

alternative mean functions to XB. Rovall and IHerson (1973) have described

the mean of 8 for an arbitrary mean function. Surnrisingly recently other
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authors such as Drygas (1976), Lai, Robbins and W~ei (1978), Anderson and

Taylor (1979) and Wu (1980) have considered the consistency of 8 under

various conditions, but always under the assumption that the mean is X8.

2. todel and Notation

Let X denote a subset of an r-dinensional Euclidenn space (r a 1).

X is the set of possible values of the independent variable x. A design for

a sample of size n is a specification of n points, XlPn.,.,.Xn ,. from X

where the n points specify the values of the independent variable at which

observations are to be taken. The x i,n need not be all distinct. If a

point x is repeated p times then p observations are taken at x. A design

can be completely described by a discrete probability measure C on
n

where the probability E assigns to a point x is the proportion of the n
n

observations to be taken at x. n will also be called the design.'4 n

The observation vector is Y = (Y1'" ,_Y n.. It is assumed that

for each n

y = m(x. ) + C. i = l,...,n,

where n, the unknown mean function, is a real-valued bounded and continuous

function on X and cin , n = 1,2,...; i = 1,...,n, are identically distributed

'4 randon, variables with mean zero and variance a2 . It is also assumed that

£ . ,n are independent for each n = 1,2,... Thus Y " Yn€1n 'n,n "' ",n'" "* n

are inderendent random variables witha E Y. =M(x. and variancea
i,n i'n

Let f(x) a (fl(x),..., fn(x))' denote a p x 1 vector of real-valued,

bounded and continuous functions on X. For a given design, x l,n,..Xn,n,

let Xn be the n x p matrix with (i, j)th element f (xi,n). The asymptotic

behavior of the estimate B = (XnX XnY will be iuvestigated in this taper.
n n n n n
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will be called a linear least squares estimate since, for a given

observation n = (l ,yn 1 ), n is the vector 0 whichi minimizesn l,n'"y~

£1r~ i=. (y - O'f(xin)2 Conditions under which X'X is non-singular and

n is uniquely defined are given in Lemas 3.1 and 3.4.n

Let & be a probability measure on X. A p x 1 vector 0(n,E) will be called

a best linear approximation of m) if

f(m(x) - VNm,)f(x))2d9(x) = inf f(m(x) - -f(x) 2d(x). (2.1)

Since 0(m,&) depends on the unknown mean function m, O(n,&) is a parameter.

Let M(t) denote the p x p matrix with (ij)th element ffi(x) f (x) d&(x) and

let c(&) denote the p x I vector with (i)th coordinate ff (x)m(x) dg(x). In

optimal design theory (see, e.g., Kiefer (1962)) a multiple of r(E) is called
the information matrix of &. If H(E ) is non-singular, aln' If is the

nI i

covariance matrix of 8n By equating the partial derivatives

af(m(x) - e8f(x)yd&(x)/D8j, j = 1,...,p, to zero it is easily verified that

if M(&) is non-singular then B(m,) is unique and equals M-(E)c(C). Under

conditions relating a sequence of designs tn to &, it will be shown that n

is a consistent estimate of S(m,Q) and a is asymptotically normal with mean

"(m, ). In this sense, the best linear approximation $(m,&) is the parameter

being estimated by the linear least squares estimate 0n when the mean m(x) is

not necessarily linear.

3. Consistency

Let F.n be a fixed sequence of designs for sample sizes n = 1,2,...

Throughout it will be assumed that n converges weakly to a probability measure

It
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where weak convergence is defined in Billingsley (1968). The main result

in this section, the proof of which is deferred until the end of the section,

is the following theorem.

Theoren 3.1: If ( ) is non-singular, then 8n is a consistent estimate

of O(m, ) in that the randor vectors B converge in probability to the real-

valued vector S(11,c) = I- l ) c().

It is important to note that the parameter a(m,&) which 8n estimates

depends on E. The experimenter chooses C when the sequence of designs

El' &2"" is chosen. & should be chosen so that the definition of best

linear approximation in (2.1) accurately reflects how the experimenter wishes

to measure the closeness of O'f(x) to m(x). If the support of & consists

only of a finite number of points, a-f(x) will be compared to m(x) only at

these points in determining 8(m,). If the air is to estimate a S so that

&'f(x) is close to ri(x) for all x in X, a c'_hoice of a & whose support is all

of X, e.g., uniform on X, seens more appropriate. In optimal design theory

(see, e.g., Kiefer (IM9) or Karlin and Studden (1966)) the optimal design

often has a support with a finite number of points. These designs may not

be very appropriate if the mean n(x) is not of the forn 8"f(x). The fact

that what 8 is estimating depends on the design if m(x) 0 B"f(x) has

been recognized previously. See, for example, Draper and Smith (1966, Chapter

2, Section 12) or Royall and Herson (1973).

The following lemma gives a condition under which M(E) will be non-

singular. The functions f1(..), .... Cx) are called linearly independent -

if, for a p x 1 real-valued vector a,a'f(x) = 0 a.s. & inmlies a = 0.

Lemma 3.1: If f1(x),...,fp (x) are linearly independent - then .i(E)

is non-singular.
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Proof: Let a be a p x 1 real-valued vector. Assume M(E)a = 0. To

show 'I(&) is non-singular it suffices to show a = 0. !( )a a 0 implies

0 W a'C's) = cf(x))2dx). This implies a'f(x) = 3 a.s. r. Since

f (x),..., f(x) are linearly independent -C, a = .

To study the asymptotic behavior of 0 , it is useful to note that
n

, n a (Xn )-XY (3.1)

nl nf n nn

= I(n XX X'c) + Xn-IXnX )-(n-1Ym )
n n n nln nl fnn

where =1 (l,n,... and n  = (m(xln) m(xn,n ) ) . The asymptotic

nbehavior of n-1Xnc n , n-1XnM and n-IYnis described in the following three
n n n fn

lemmas.

Lemma 3.2: Under the model the random vectors n-1 Xc n converge in

probability to ().

Proof: It suffices to show that for any 6 >,

lin P(In= f Cx.n. > n 6) = 0 for r = I,... p. (3.2)
n-+m i 1 r i,n ci,ni

Let a - max sup f2 (x). Since the f are bounded, a < ®. Fix
l!r<p r r

0. By Chebysiev's Inequality and the fact that ,n' are uncorrelated

with mean zero,

P(x c. J ~ I~n E(,n 2 2 2
i r1 fr Xi,n)ci,nl> n6) s En= fr(xi,n)i,n) 2n2162 £n f2 2 2n22

a l f(xi, )/n 6 ' a2a/n62 . Thus Equation (3.2) is true.1I

For the sake of completeness it should be noted that the result of Lemma

3.2 and hence the consistency result of Theorem 3.1 holds under the condition

that for each n, £l,n ..... n are uncorrelated with means all zero and variances
2R

all bounded above by 2. The stronger condition that ci,n,..cn, n are i.i.d.

is not necessary.
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Lemma 3.3: Under the assumptions of the model, lir n-1 Xnm =c().
n-m nlnf

Proof: Coordinatewise, this result is

nn1 im n Z f (x )nx. f f (x)r(x)dE(x), r =1..p (3.3)
n-w i 1r i ,n i,n r

Note that n-1 Zn= f (x )m(x ) = f (x)m (x) dn (x).
i I r i,n i,n n

Since f and m are bounded and continuous and En converges weakly to F , Equation
- l r

(3.3) is true.II

Lemma 3.4: If ?(!) is non-singular then (i) lin n-XX =
n n

(ii) n-IX'X is non-singular for all sufficiently large n And
n n

A} (iii) lira (n-lx' rC

,~ n n

Proof: Elementwise, statement (i) is

L lira n-I Zn= fr(Xin fs(Xin ffr(X)fs (x)dE(x) ' r, s --1,...,p. (3.4)

Note that n- En= f (Xi )fsX. ) = ff (X)f (x)d&n(x).
i 1 r 1,fl 5 i,n r s nl

Since f and f are bounded and continuous and E converges weakly to C,Sr s n

Equation (3.4) is true.

Since the determinant is a continuous function, by (i),

lir In-lX I =1 T-Im $ 0. Thus (ii) is true.
n n- 1 -1If An and A are non-singular matrices and lirn A = A, then lim A n A

n- I rc C -* r

By (i) and (ii), n X'X is non-singular for all large n and (iii) is true.IInI n

Proof of Theorem 3.1: This theorem follows from Equation (3.1) and Lemmas

3.2, 3.3 and 3.4.11

4. Asymptotic Normality

1/2
In this section, the asymptotic normality of n (8n - a(m,E)) is investi-

gated. As in Section 3, it is assumed that &n is a fixed sequence of designs

for sample sizes n = 1, 2,... whith converges weakly to a probability measure

The asymptotic normality result is given in Theorem 4.1.

I
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Theorem 4.1: Assume H!(C) is non-singular. Let m= (m(xl..., m(Xn~)):

Assume that lim n /2((XnX)-Xn - (n,)) exists and equals the p x 1 vector
n--~ nn n n

1/2b. Then n (a -8(n, )) converges weakly to a nultivariate normal random vector

with mean b and covariance matrix a-(r).

Proof: Let T = -1/2x 'lote t, at
(12 1 )T 11 2((X

n ( n - 8(m,.)) = (n - n nn )nn - 0(m,)). (4.1)

By assumption, the last term converges to b. By Lemma 3.4, lim (n X-X if, n n

So to prove the -esire& result it suffices, by an extension of Slutzky's Theorem

(Billingsley (1968), Theorem 5.5), to show that the random vectors Tn converge

weakly to U where U is a p-dimensional multivariate normal random vector with

mean 0 and covariance matrix a

To prove the convergence cf T r.o U, it suffices, by the Cramer-Wold device

(Billingsley (1962), !. IS), to sho.; that c'T corverges weakly to a'U for all€ n

p-dimensional vectors a. Fix a # 0. Lct n n 112(f(x ))Cn. Then
j,n j,n*

a'Tn n " so it suffices to shc,; that n ii 'V.nconverges weakly to ctU.
n j =1 J,r. n ,

By the definition of E. hin. : . arc independent random variables with, ".. l,.n' "' . -. ,n
_1 -'

zero means and variances respectively equal to . -(qf(xj,.))- a-. Thus it

suffice3, by the "or.al Central Limit Theorem (Loive (1963), p. 288), to show that

lip. En Lill2 :a'a'!*(&)a (4.2)

and that

1 ;1 in Z= jE I > 0 for all 6 > 0 (4.3)

where I is the indicator function.

To verify Equation (4.2) note that jn E V = 0a(n XX n a. By Lemmaj=l E;2 ,n"  n n) .B e

3.4, (n- XnXn) = K( ) so Equation 4.2 is true.

Finally to verify Equation 4.3, let D : spIa'f(x)I. Since the f. are

bounded, B < . Fix6 > 0. Sincec l,n' '.,n,n are i.i.d, random variables,



• ia i= EW , n 1( 11j~n > 6 )n 2 2/2B1

S B2 ir n I Ec I (I. 1> 6n 'B)
j= jn j n

= B2 lin E c I(1 1,1i > n -113

= 0.11

In theorem 4.1, the asymmt'tic mean b depends on the unknown function

m(x). In order for Theorerm 4.1 to be useful for making large sample inferences

about 8(m,&), say to construct conficence sets for , b must be zero for

all bounded, contiauous functions r.(x). Lemnmas 3.3 and 3.4 show that (XX n-Xm

1 converges to B(m,C) for all bounded, continuous n(x). It is reasonable to expect

that b = 0 if n converges to & fast enough in some sense. Conditions under
1&n

which this is true are examined in the remainder of this section. A useful

result in this regard is given in Corrollary 4.1. It should be noted that one

important situation in which b = 0 is if m(x) =Wf(x) for some B . In this

case (X'X Xn'm = 6 = 6(m,Q) for all large n.
n n n n

To simplify notation, for the remainder of this section assume that X = (u,v)

an interval on the real line. Similar results hold if x is a r-dimensional

vector. Let nCx) and &(x) also denote the distribution functions of the pro-

* bability measures % and . Ass,.ire t'.ere is a Function h(x) such that

lim n 1/2 (n(x) - &(x)) = h(x almost evervw~ierc with resnect to Lebesque

measure on (u,v). Assume that fVun nl/ (x) - E(x)Idx < -. Assume the

functions m, f1,..., f are differenciable on'(u,v). Let g' denote the deriva-

tive of a functiorn g. The mean vector b in Theorem 3.1 can be written in terms

of the function h. To obtain this result, the followinp lewma will be used.

Lemma 4.1: Let *(x) be a real valued function defined on (u, v) with a

derivative 1Vand let C,(x) be a distribution function with support contained in



(u, v). Then

fV O(x)dG(x) fV 4(x) (l - G(x))dx + d(u). (4.4)
U U

Proof: A:; c(x)dG(x) = Jv IxV'(u)du iG(x) + u)

Equation 4.4 follows fron Fubinis Theorem (Lo~ve (1963), p. 135) by inter-

changing tile integration order.;

The next theorem gives an expression for the mean b of Theorem 4.1 in terms

of matrices which depend on the f'Un1ction 'i. Lot d denote tho x 1 vector with

(itl, coordinate -V (ff*, by Let D denote the px pmarxwt

U ' 3

Theorem 4.2: Assume ~()is non-singular. Th en b N (E) (d + DM (MC(M).

-1Proof: Let A =n xX. .3y Lema 3.4, A Tis non-singular for all large

4n so we shall write A forA
nn

b = lim n1 1  (A 1 (n~ )m (C- tn-,wn n n

1/2 -1I -l1 - I -I
=lim n (A (n X, -, C( M + (A - :(M)C(M).n n n ,

To prove the desired result it suffices to prove that

lnn1/2 A-I -nl -ur n A nXM - c(Q)=i (Q)d. (4.5)n n n

and

lmn1/2 (-l --N1(Qc1 g)P.-IM M (46
limW nnA

By Lemma 3.41, lir A' M (Q. Thus to prove Equation 4.5 it suffices to
n-- n

show that

Jrn n 1/2(f f (x)m(x)d (X) - fv f (x)rn(x)d&(x))
n-u r n u r

v 1/2
-J-im fV (f (X)())'n (~(x) - ~x))dx (4.7)

n- u= r n

-- fv (f (X) M.(X) )'h(X) "IX, r .1... In.

The first equality is true by Lemma 4.1 and the second equality is true by the

assumptions made about n 1/2 n (x) E (x)) and the Dominated Convergence Theorem



(Lo~ve (1963), p. 125).

Note that An - n A ( () - A ), - (). By Lemma 3.4,
ni n\- n n(

lir A = - (). Thus to prove Equation 4.6 it suffices to show that
11-+- n

l nl/2 ( fr (X)fs (x) dC(x) -fv fr(X)fs(X) d n(X))

-=(fs(x)Yn (F (x) -C(x))dx (4.

fv -Ps
- 'I(f (x)fs(x))h(X) dx, r = i.... ,; s = 1,..., .U r

The first equality is true by Lemma t.1 and the second equality is true by the

assumntions made about nl/2 (F (x) - (x)) and the Dorinated Convergence Theorem.

Corrollary 4.1: Assume :(&) is non-singular. If lim n11/2 (E - (x)) = 0

almost everywihere with resnect to Lebesque i:Ieasure on (u, v) then nl( - S(m,))

* 4 converges weakly to a nultivariate norrtl randoi' vector with mean 0 and covariance

matrix a2,:-(

Proof: h(x) = Ii i";(x) - E(x)) = 0 a.e. implies d = and D =0.

Thus by Theorem 4.2, the mean b in Theorem 4.1 is 0.

5. Examples

In this section two examples are considered. In the first example a fairly

general method of constructing designs which satisfy the conditions of Corollary

4.1 is given. The second example gives a sequence of designs for which the

function h(x) is non-zero.

Example 1: Let C(x) be a fixed continuous and strictly increasing distri-

bution function on the real line. Let (x) denote the inverse of E(x). Let

n1 , n,. . and ni, 1 .. . bc sequences of positive integers such that n/m
11/1

is an integer for each i an. lim T. /n2 . For k = 1,. n/m let
I, dntete ntral(-1(k li~/i £-i

I, . enote tie interval ('1- /n), (<i/n)). Let .ni denote any

design with n.. observations in each or the intervals T, Then . converges

112:eakly to F. Furthermore, s p k (x) - (x)l :< mi/n So since lir n. n 2

U. 1 1" 1 i
1
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lia n. (U (x) - &,x)) = 0. By Corollary 4.1, the mean vector in Theoremi

4.1 is zero for a sequence of designs constructed in this way. A special

case of interest is the case of m. for some fixed N and n. = 'Ji.

Example 2" !,ere is an example of a sequence of designs for which the

.1(x) function is non-zero and, by Tieorem 4.2, the mean vector b in Theorem

4.1 is not zero "or all imean functions m(x). Let [u, v] = [0, 1] and let

C be cte uniform .istribution on [1, 1. Let n. = i- for i = 1, 2,... .. Let•1

n be the desi!'n which ta!hes one cbservation at each of the i i noints
1

1/i + k/i-, k= ,,..., i- i - 1, and i observations at 1. For each i,

x 1/i < n(x) 5 x for all x c [0, 1] so & (x) converges to &(x). But
: !1 1

for any i and any x E (1/i 1), -1/i < r (x)- &(x) ¢ -1/1 + 1/i'. Thus for all(/ ' 1)' 1 i I •T () E X

- x E (0, 1), h(x) = i lim  i £ ni (x) - = li  i(E (x) - E(x)) = -1. Suonose
n n

f (x) = 1 nndI f (x) = x. Sunpose rn(x) = x-. Then using the result of Theorem

4.2, the mean vector U can be calculated to be b = (-1, 2)'

-3

kI
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